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Abstract. Constraint Programming is one of the major contributions of
Computer Science for solving problems of high complexity. This problems
can be modeled like Constraint Satisfaction Problems and solving them
via Constraint Propagation and Enumeration. In this work, we study
the resolution of puzzles (Latin Square, Magic Square and Sudoku)with
this approach and we evaluate the performance of different variable and
value selection heuristics in the Enumeration phase, demonstrating the
relevance of the Enumeration Strategies in a Constraint Programming

process.

1 Introduction

The Constraint Programming (CP) has been defined as a technology of Soft-
ware used to describe and solve combinatorial problems [2,3]. The main idea of
this paradigm is to model a problem by mean of a declaration of variables and
constraints and to find solutions that satisfy all the constraints. Many of the com-
binatorial problems focused by CP can be modeled like a Constraint Satisfaction
Problem (CSP), which consist of a sequence of variables X = 1,22, ..., Zn With
its respective domains D = Dy, , Dz, .y Dz, and a finite set C of constraints
restricting the values that the variables can take simultancously [19]. The goal is
to assign a value to each variable satisfying all the constraints. The most general
notation for CSP is the following [21]: < C;z1 € Dz,,...;Tn € Dy, >

The basic mechanism underlying CP to solve a CSP interleaves Constraint
Propagation (network consistency) and Enumeration (distribution or labeling)
[1). In essence, the algorithm increases the efficiency of the search by looking
ahead actively using the constraints to prune the search space. Furthermore,
an optimization approach is feasible from constraint satisfaction in a form of
branch and bound. That is, as soon as a solution is found, a further constraint
is added forcing future values to be better than the value just found according
to the optimization criteria. This causes the system to backtrack until a better
solution is found. When no further solutions can be found the optimum value is
reached.

The underlying structure to the described paradigm CP is shown in Figurc
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Fig. 1. Constraint Programming Structure

This work is focused on the Enumeration phase of CP, where the use of
variable and value selection heuristics is critical. A suitable definition and the
use of an cnumeration strategy can improve the resolution process strongly. We
apply to resolution of puzzles (Magic Square, Latin Square and Sudoku) different
variables and values selection heuristics presented in the literature [13,17,4, 6].

This paper is organized as follows: in Section 2 is described the resolution
technique, Section 3 and 4 show the enumeration strategies and the modeling of
each problem in the platform used: Mozart!. In Section 5, we analyze the results
obtained and finally we conclude in Section 6.

2 Resolution Technique

In the resolution of Constraint Satisfaction Problems diverse techniques can be
used, currently they are solved using complete techniques (global optimization),
incomplete techniques (local optimization), and hibridizations of both techniques
[8]. Specifically, the Constraint Programming community uses a complete ap-
proach alternating phascs of constraint propagation and cnumecration [7], where
the propagation pruncs the scarch trec by eliminating values that can not par-
ticipate in a solution. Enumeration [1] consists of dividing the original CSP in
two smaller CSPs, creating one branch by instantiating a varible (z = v) ar%d
another branch (z # v) for backtracking when the first branch does not contain
any solution.

4 WWWw.mozart-oz.org
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When enumerating two decisions have to be made: What variable is selected
to be instantiated? and What value is assigned to the sclected variable?. In order
to support these decisions we use enumeration strategics.

3 Enumeration Strategy

The enumecration strategics arc constituted by variable and value sclection heuris-
tics [12].

3.1 Variable Selection Heuristics

The main idea that cxists within the choice of the next variable, is to minimizc
the size of the scarch trec and to ensure that any branch that does not lead
to a solution is pruned as carly as possible, this was termed as the "fail-first”
principle by Haralick and Elliot [9], described as ”To succeed, try first where you
are most likely to fail” [16,1].

For variable selection, it is possible to find a classification according to the
moment when the selection order is done.

Static Selection Heuristic: it generates a fixed order of the variables before
initiating the scarch. Here the variables arc always sclected in the order prede-

fined for instantiation.

Dynamic Selection Heuristic: it can change the instantiation order of the
variables dynamically as one advances in the tree search. It is based on informa-

tion gencrated during the scarch.

Here the dynamic and static terms are used according to the definition given
in [2], also corresponding to the used in [16]. This definition differs from the con-
cept used in (7, 12], where the idea of dynamism is based on adaptive constraint
satisfaction [5], where the idea of dynamic selection heuristic consists basically
in detecting the bad decisions made with respect to the selection of variables
and values, replacing on-the-fly the strategies with bad results by others that
promise to be better.

In this work we used the following variable selection heuristics:

Minimum Domain Size (MiD): at cach enumeration step the domain of
cach onc of the variables not yet instantiated is analyzed, then the variable with
smaller domain size is sclected.

Maximum Domain Size (MaD): the idea of this heuristic is similar to the
previous one, nevertheless in this case it sclects the variable with the greater
domain size.

Order Previously Established (Opre): in this static heuristic, we fix a vari-
able order before initiating the resolution process. The heuristic Opre has been



Variable and Value Selection Heuristics: Application to Solve Puzzles 241

dcfined specifically for the resolution of magical squares, selecting first the ele-
ments of the main diagonal, after the elements in the upper triangle of the main
diagonal and finally the clements in the lower triangle of the main diagonal.

3.2 Value Selection Heuristics

In choosing the value, we can try, if possible, a value which is likely to lead to
a solution, and so reduce the risk of having to backtrack and try an alternative
value. In practice, of course, the best we can normally do is to choose the value
which scem least likely to lead to an inmediate failure. This principle, which
might be termed ”succeed-first”, has not lead to widcly-applicable value ordering
heuristics comparable to the smallest-domain-first heuristic, but can give good
heuristics tailored to individual problems, or types of problem [16]. In synthesis,
this principle (usually problem dependent) indicates that the value with a high
number of supports is likely to be preferred.

In this work we used the following value sclection heuristics:

Smaller Value of the Domain (SVal): this heuristic establishes that the
smallest value of thec domain is always chosen.

Greater Value of the Domain (G Val): it is similar to the previous one, but
instead of choosing the smallest element of the domain, the greater element is
selected.

Average Value of the Domain (AVal): this heuristic selects the value of the
domain that is morc near to the half of the domain, it calculates the arithmetic
average between the limits (superior and inferior) of the domain of the selected
variable and in casc of having a tic the smallest value is sclected. In order to
understand better this concept: considering that z; has been sclected to the
variable whose domain is 2#4, to sclect the value to instantiate calculates the
average between the limits of the domain, this is:(2 + 4)/2 = 3, thercfore the
value that is sclected in this stage corresponds to 3. If the domain of z, went
1#4 the valuc to sclect he would be 2, since the average is (144)/2 =2.5 and
in casc of tic always the smaller valuc is selected.

Immediately Greater Value to the Average Value of the Domain (GA 4
this heuristics sclects the smaller value of the domain that it is greater as well
to the average valuc of the domain. Consider the previous example, when the
domain of the variable is 244 in heuristic the previous one sclects value 3, how-
ever with present the heuristic one selects value 4. Thus, when the domain of
the variable is 1#4 present the heuristic selects value 3.

Finally, established the heuristic to use, the enumeration strategies arc com-
pound according to Table 1.
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S, = MiD+SVal (S5 = MaD+SVal |Sg = Opre+SVal

S> = MiD+GVal|{Ss = MaD+GVal|S1o = Opre+GVal
S3 = MiD+AVal|S7 = MaD+AVal |S11 = Opre+AVal
Ss = MiD+GAV|Ss = MaD+GAV|S12 = Opre+GAV

Table 1. Enumeration Strategies

4 Description of Problems

4.1 Magic Square

This puzzle consists in finding for a given N an NxN matrix such that cvery
cell of the matrix is a number between 1 and N2, all the cells of the matrix must
to be different, and the sum of the rows, columns, and the two diagonals are all
equal.

The mathematical model used for its representation defines a variable z;;
that represents the value that cach cell of the matrix can take, and a variable S
for the sum of each row, column and diagonal. Then the CP model cstablishes

the following constraint:

Vi,j € {1,..,N} Alldif ferent{z;;} (1)
N
Y ;=8 Vie {1,...N} (2)
Jj=1
N
> ;=8 Vie{l,.,N} (3)
=1
N
Y imii=8 (4)
i=1
N
Y Tinisny =S (5)
i=1

The constraints (2) and (3) ensure that the sum of each row and cach column
will be equal to S, and the constraints (4) and (5) assure that the sum of cach
diagonal will be equal to S.

4.2 Latin Square

A Latin Squarc puzzle of order N is defined as an NxN matrix where all its
clements are numbers between 1 and N with the property that cach one of the
N numbers appear cxactly once in cach row and exactly once in cach column of
the matrix.



Variable and Value Selection Heuristics: Application to Solve Puzzles 243

The mathematical representation used to model the problem has a variable

z;; that represents the value of the cell (4,5) of the matrix. The CP model
consists of the following constraints:

Vie {1,..,N} Alldif ferent{z;1, iz, ..., Tin } (6)
vj e {1,..,N} Alldif ferent{z1;,z;, ..., zn;} (7

4.3 Sudoku

Sudoku is a puzzle played in a 9x9 matrix (standard sudoku) which, at the begin-
ning, is partially full. This matrix is composed of 3x3 submatrices denominated
"regions”. The task is to complete the empty cells so that cach column, row and
region contain numbers from 1 to 9 exactly once [10, 11],

The model used for the representation can be seen like a composition of the
models used in the above puzzles, the variable z;; represents the value that each
cell (4,5) can take (in this case, from 1 to 9). In order to restrict that cach row
and cach column have values from 1 to 9 exactly once the following constraint
arc duc to imposc:

Vi € {1,9} Alld’Lff@TCnt{:Ell,.’ElQ,.’1},,9} (8)
Vi€ {1,..,9} Alldif ferent{z,j,zo;,...,xq;} (9)

On the other hand, each cell in regions Sy; with 0 < k,! < 2 must be differ-
ent, which forces to include in the model the following constraint:

Vi,j Alldif ferent{z;, Ti(j11), Tii42), T4 1) Ta+1) (1) T 42)s (10)
Z(i+2)55 L(i+2)(j+1)» w(i+2)(1’+2)}

cont=k*3+1 yj=1[0x3+1.

5 Analysis of Results

Each onc of the cxposed problems were solved using the cight first strategies
listed in Table 1, and additionally the strategies S, ..., S12 werc used in the
resolution of magic squares puzzles, because these strategies are constituted by
a variable selection heuristic designed specifically for such problem.

The tests conducted allow to evaluate the performance of the enumecration
strategies based on the following indicators of performance:

Number of Backtracking (B): it shows the amount of bad decisions mgdc
during the search of the solution, that is calculations or decisions exccuted with-
out leading to a solution.
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Number of Enumerations (E): this metric tells the amount of nodes or spaces
gencrated to find the solution of the problem, including the good enumerations
that lead to a solution and the bad cnumerations that force to backtrack.

Time (t): it measures the required time to solve the problem.

Each cxecution had a time limited to 10 minutes, not finding results are
indicated with the symbol ”-".

5.1 Searching the First Solution

In general it is possible to appreciate that for small instances the strategics do not
reflect significant differences. Nevertheless when observing the results obtained
for ecach one of the problems it is possible to see that the performance of the
strategics varies as N increases, this because with the increase of N the size of
the scarch space grows drastically [20]. On the other hand, when obscrving the
results obtained it is perceived that the strategies constituted by the heuristic
MiD (S,,...,S4) have better behavior in thosc instances in which the search
spacc grows, this in comparison with strategies that arc guided by the heuristic
MaD (Ss,...,Ss). Such differences happen mainly because the heuristic MiD
lcads as rapidly as possible to an insolvent space, allowing to prunc the tree
scarch. Leading to an insolvent space quickly consists of choosing variables with
fow clements in its domain, increasing the probability of failing before gencrating

a big search tree.

T 4 5 10 15
E[@)]O[E)]B[®] (E) [ (B) [(¢) |(E)B)|(t)|(E)|(B)] ()
S;[3[0|9[6]0|[10]10[ 0 [10[67] 1 [18]165] 7 |76
S| 3|0 |10/ 6|0 [10{10| 0 |10[67| 1 [18|165 7 |78
Ss| 3|0 |10[ 6|0 [10] 12| 0 |12(70| 2 |18]163 5 |67
Ss| 3|0 |10/ 6|0 [10] 10| 0 |11[70| 4 |31|309]|138|229
Ss| 3|0 |12| 8|0 (10]94 77|16 -|-|-|-]|-]|-
Se|3|0|9|8|0 09477 |15-|-|-|-]|-]|-
S;| 3|0 [10] 8 | 0 |10|1644|1625[106| - | - |- | - | - | -
Ss|3|0|10/8|o0]10[36 21 f12)-|-|-[-]-]-

Table 2. Latin Squares: Enumerations (E), Backtracking (B), CPU time (t) in ms.

Observing the results obtained for the magic squarc problem, onc of the
aspects to emphasize is the good performance obtained by the strategics con-
stituted by the heuristic Opre, particularly using it in combination with value
selection heuristic AVal and GAV, this good behavior reflected in the Table 3,
it is duc mainly because the heuristic Opre generates a more effective constraint
propagation, reducing the size of the search space considerably. The reduction
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N? 9 T 25 49
E)@B)M] (E) | B) [®) | ®) [ B [ ® [ E®) [ B) [

Si|4(1(1] 741 717 30 |208861 | 208827 | 12669 - - =
Sz (13| 7 |1 1681 | 1655 | 63 |9113251|9113227(505231 - - -
S3| 8 5|1 2465 | 2449 | 81 2187 2158 76 [101510{101424|4415
S, |13 7| 1| 406 384 27 7061 7037 452 | 7139 | 7081 | 487
Ss | 16| 7 | 1|45097 | 45043 | 3680 - - - - - -
Se|14| 8 [ 1| 681 646 46 - - - - - -
S7(22(10| 1 |847094|847055[{48519 - - - - - -
Sg [ 23|19 1 [358775|358772(27115| 557090 | 557608 | 44189 - - -
So|5|2|0]| 49 34 3 26475 | 26428 | 1396 - - -
S10{13| 7 | 1| 508 | 491 | 24 | 80761 | 80728 | 5078 - - -
S| 8|5 |1 1323 | 1296 | 56 393 375 21 - - -
S12|13| 7 | 1| 791 763 55 12 1 2 82107 | 82047 {6649

Table 3. Magic Squares: Enumerations (E), Backtracking (B), CPU time (t) in ms

S Sz Ss 5
Source| Degree | (E) | (B) [ (t) [(E)[(B)[(t)] (E) | (B) [(t) [(E)[(B)](t)
[14] [None-1| 84 | 52 | 14 [220[195[21 | 1308 | 1283 | 88 [183[159|26
(14] | None-2 |2836|2815(153|271|249|23 |11074|11048|603|124|102| 22
(18] | Basy | 7 | 3 |11|17]13|11| 7 | 3 |10]17|13]12
(18] |Medium| 16 | 6 |11 [174|164|19 16 | 6 |11|174|164|26
(18] | Hard | 27 | 16 |11|24|18|11] 27 | 16 |11|24|18(12

Table 4. Sudoku solved with heuristic MiD

Ss Se
Source| Degree | (E) | (B) [ (t) | (E) | (B) | (t)
[14] | None-1| - - - - - -
[14] |None-2| - - - - - -
(18] | Easy |[18554|18537|1799|274476|274472(28149
(18] [Medium| - | - | - |121135[121113(12868
(18] | Hard | - - - - - -

Table 5. Sudoku solved with S5 and Se strategy
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of the scarch space takes place because at the beginning of the process the vari-
ables chosen are related to a greater number of other variables (clements of the
main diagonal), which produces that when cvaluating the levels of consistency
between the variables is climinated a greater amount of inconsistency, reducing
the spacc to explore.

In order to conclude, it is possible to mention that the size of the scarch
space has a great incidence in the resolution process, where his exponcntial
growth makes the process considerably more expensive, this is possible to appre-
ciate when solving different instances of the same problem (of course, hypothesis

demonstrated in a lot of previous work)

Sz Ss
Source| Degree | (E) | (B) | (t) | (E) | (B) | (t)
[14] | None-1| - - - - - =
[14] | None-2

(18] | Easy |24195(24169(2582(721773|72155(7484
(18] |Medium| - | - | - |88720|88706/9763
(18] | Hard [93138]93105/9158| -  Hill

Table 6. Sudoku solved with S7 and Ss strategy

With regard to the resolution of Sudoku, different published instances have
been used from puzzles in the newspaper "The Times” [18], where usually the
difficulty of puzzle is provided. On the other hand also a collection [14] of puzzles
have been used which have single 17 numbers given in the initial matrix, this
amount corresponds to the smaller known number given in the initial matrix
[15], these last ones are not classified by difficulty.

In Table 4, Table 5 and Table 6 we show the source from where puzzles were
obtained, the degree (difficulty level), the heuristic used to solve each instance
and the different measured indicators of performance during the execution of
the tests. Although some authors say that the amount of numbers given initially
does not have incidence in the degree of difficulty of Sudoku, the results obtained
here show bad results with 17 numbers in comparison with the other cases (casy,
medium and hard), where the amount of numbers given initially is greater 25.

6 Conclusions

In this work we showed that variable and value selection heuristic influence the
efficiency in the resolution of combinatorial problems. The efficiency of resolution
was mcasured on the basis of performance indicators. The work included the
modcling and resolution of classic puzzles (Magic Square, Latin Squarc and
Sudoku) in Mozart.

The possibility to obtain better results in the search process was showed using
suitable criteria of sclection of variables and values. In fact, to sclect a variable in
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a scarch process implies to determine the descending nodes of the present space
that have a solution. It is very important to detect when the descending nodes
are not a solution, because in this way we avoided to do unnecessary calculations
that force to backtracking. Due to the above reasoning the heuristic selecting
the variable with minimum domain size (MiD) presents a better behavior in
comparison with the other strategies, because MiD bets by the variable going
towards an insolvent space avoiding a priori unnecessary calculations.

We showed that the resolution possibilities of a certain problem depends on
the search space size, it is possible to be appreciated when observing the differ-
ences generated in the results obtained in the resolution of different instances of
the same problem.

At the moment of thinking in sclection heuristics is important to consider the
"model-and-run” paradigm for CP, in order to use variable and value selection
heuristic efficiently.

In the future, we plan to integrate in a Constraint Programming process other

techniques such as Local Search or Metaheuristics working like enumeration
strategics.
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